English • На русском
Електронний журнал «Ефективна економіка» включено до переліку наукових фахових видань України з питань економіки (Категорія «Б», Наказ Міністерства освіти і науки України від 11.07.2019 № 975)
Ефективна економіка № 3, 2015
УДК 338.27
С. А. Ус,
к. ф - м. н., доцент, професор кафедри системного аналізу та управління,
Державний ВНЗ «Національний гірничий університет», м. Дніпропетровськ
Л. В. Тимошенко,
к. е. н., доцент, доцент кафедри прикладної економіки,
Державний ВНЗ «Національний гірничий університет», м. Дніпропетровськ
М. Бальнов,
магістр, Державний ВНЗ «Національний гірничий університет», м. Дніпропетровськ
ОБҐРУНТУВАННЯ МЕТОДИЧНИХ ПІДХОДІВ ДО ПРОГНОЗУВАННЯ ОБСЯГІВ ПРОДАЖУ ПРОДУКЦІЇ З СЕЗОННИМИ КОЛИВАННЯМИ ЇЇ РЕАЛІЗАЦІЇ
S. А. Us,
Candidate of Physico-mathematical Sciences, professor of department of system analysis and control,
State Higher Educational Institution "National Mining University", Dnipropetrovsk
L. V. Tymoshenko,
Candidate of Economic Sciences, Senior Lecturer, department of applied economics,
State Higher Educational Institution "National Mining University", Dnipropetrovsk
M. Balnov,
master, State Higher Educational Institution "National Mining University", Dnipropetrovsk
JUSTIFICATION OF METHODICAL APPROACH TO FORECAST PRODUCT SALES WITH SEASONAL OFFTAKE FLUCTUATIONS
В статті проведено критичний аналіз основних підходів до прогнозування обсягів продажу продукції в сучасних умовах господарювання. Обґрунтовано методичний підхід до прогнозування обсягів продажу продукції, який базується на комбінуванні найбільш доцільного для даної групи товарів методу прогнозування та методу прийняття рішень з урахуванням ринкових ситуаційних змін. Визначено основні етапи застосування запропонованого методичного підходу. На прикладі прогнозування обсягу продажів безалкогольних напоїв, реалізація яких має сезонний характер, доведено доцільність застосування запропонованого методичного підходу.
A critical analysis of the main approaches to forecast product sales volumes in the current economic conditions is provided. Methodical approach to forecast product sales is proposed and substantiated. It is based on combining the most appropriate prediction method for a given group of goods with decision-making methods in terms of market situational changes. The main steps of using proposed methodological approach are defined. Applying the method of sales forecasting where the volumes of soft drinks sales are of seasonal nature proves the feasibility of the proposed methodological approach.
Ключові слова: прогнозування, продажі продукції, ринкова ситуація, сезонність реалізації, методи прийняття рішень.
Keywords: forecasting, product sales, market conditions, seasonal sales, decision-making methods.
Постановка проблеми. В умовах ринкової економіки ефективна діяльність підприємств в значній мірі визначається плануванням і прогнозуванням, тобто можливістю достовірно передбачати далеку і ближню перспективу свого розвитку. З розвитком і ускладненням ринку завдання прогнозування стає все більш складним і суперечливим. В таких умовах прийняття управлінських рішень і розробка управлінських впливів вимагає аналізу конкретних ситуацій. Особливо це стосується прогнозування обсягів продажу продукції, що визначає дохід від реалізації, а отже формує кінцеві фінансові показники діяльності підприємства.
Прогнозування обсягу продажів – невід'ємна частина процесу прийняття рішень. Це систематична перевірка ресурсів компанії, що дозволяє більш повно використовувати її переваги та своєчасно виявляти потенційні загрози. Розв’язування цієї задачі здійснюється шляхом використання методів прогнозування. Різний ступінь невизначеності інформації впливає на характер вживаних методів, способів і прийомів. Однак часто необхідно враховувати не тільки наявні дані, а і різні можливі шляхи розвитку ситуації, ймовірності реалізації яких також оцінюються по різному. У таких випадках застосування одного методу прогнозування може виявитись недостатнім і доцільним буде комбінування їх з методами прийняття рішень.
Аналіз останніх досліджень і публікацій. Порватова Н.М. [6, с.75] зазначає, що одним з найбільш важливих питань у процесі прогнозування продажів продукції є правильний вибір методу прогнозування. Залежно від концептуальних засад методів прогнозування їх поділяють на фундаментальні та технічні [1, c.171]. У деяких економічних джерелах їх також називають суб’єктивними та об’єктивними методами [6]. Окремі науковці та аналітики зосереджуються на дослідженні застосування конкретних методів прогнозування, стосовно конкретної продукції [6, 3] та урахування фактору сезонності її реалізації [3].
На думку Колісника М. [4] загальноприйнятою помилкою прогнозування є формування плану на основі єдино можливого результату подій щодо продажів. У цьому випадку часто буває, що фірма націлюється на досягнення встановленого єдиного прогнозу, а коли його досягти не вдається, то менеджери фірми починають розчаровуватися у самому процесі планування. Прогноз ніколи не збудеться, якщо він заданий одним числом.
Більш повною, i як наслідок, методологічно правильною варто вважати ситуацію, коли прогноз містить значення, що виникають у випадку оптимістичного, песимістичного i найбільш ймовірного результатів подій [4].
Формулювання цілей статті. З огляду на вище зазначене, метою статті є визначення та обґрунтування методичних підходів до прогнозування обсягів продажу продукції, що має сезонний характер реалізації, шляхом комбінування методу прогнозування з методом прийняття рішень.
Виклад основного матеріалу дослідження. Припустимо, що протягом останнього року на підприємстві спостерігалося зниження обсягу продажів продукції, порівняно з попереднім роком. Частина експертів вважають це випадковим і очікують підвищення рівня продажів у наступному році, інші вважають таку тенденцію наслідком економічної ситуації і очікують, що вона зберігатиметься протягом наступного року. Керівництво підприємства вважає за необхідне врахувати думки обох груп експертів. Таким чином, необхідно вирішити таку задачу: на основі існуючих даних простежити за динамікою обсягу продажів продукції протягом кількох років, і виконати прогноз об’єму продажів на майбутній період, враховуючи різні можливі шляхи розвитку ситуації.
Зрозуміло, що застосування різних методів прогнозування залежить від наявних даних. Очевидно також, що результати, отримані різними методами не будуть співпадати, і навіть застосування одного й того самого методу за різних припущень буде давати різні результати. Так при використанні, наприклад, методу автокореляції, для отримання прогнозного значення можливо варіювати ступінь впливу попередніх даних, при використанні регресійних методів результат може суттєво змінюватися залежно від обраного виду лінії регресії. Вибір методу прогнозування таким чином є окремою задачею, системний підхід до якої розглянуто в роботах [5 ]. Другою задачею, яку необхідно вирішити є врахування думок експертів. Для її розв’язування можна застосовувати методи експертного оцінювання [2] та прийняття рішень в умовах невизначеності [7].
В даній роботі для розв’язування поставленої задачі прогнозування запропоновано наступний методичний підхід, короткий опис якого можна здійснити за такою схемою:
1. Проводимо аналіз існуючих статистичних даних і на їх основі обираємо методи прогнозування для здійснення оптимістичного та песимістичного прогнозів.
2. Будуємо оптимістичний та песимістичний прогнози на основі обраних методів прогнозування.
3. На основі побудованих прогнозів отримуємо інтервальні прогнози.
4. Враховуючи коефіцієнти довіри до експертів, будуємо реалістичний прогноз.
Обчислення реалістичного прогнозу можна здійснювати на основі ступеня довіри до експертів, або своєї думки про ситуацію, за допомогою такої формули:
, (1)
тут коефіцієнт – означає рівень песимізму-оптимізму особи, що приймає рішення (ОПР), або ступінь її довіри до певного експерта. Значення відповідає оптимістичній позиції ОПР, а значення – її песимістичній позиції. Такий підхід відповідає критерію Гурвиця в теорії прийняття рішень [ ].
Розглянемо застосування описаного підходу на прикладі прогнозування обсягу продажів безалкогольних напоїв.
Перед підприємством постала задача простежити за динамікою обсягу продажів продукції, а саме – безалкогольних напоїв. Для цього необхідно виконати прогноз об’єму їх продажів на майбутній період. Дані щомісячного обсягу продажів за п’ять років наведено в табл. 1.
Таблиця 1.
Щомісячне споживання безалкогольних напоїв
Місяць |
2009 |
2010 |
2011 |
2012 |
2013 |
Січень |
383 529 |
349 255 |
419 867 |
451 783 |
467 863 |
Лютий |
344 896 |
332 983 |
376 717 |
381 806 |
408 418 |
Березень |
421 379 |
443 669 |
517 169 |
489 233 |
508 983 |
Квітень |
517 977 |
504 696 |
589 221 |
748 502 |
705 414 |
Травень |
560 454 |
635 785 |
812 553 |
906 179 |
1015 905 |
Червень |
753 673 |
795 750 |
819 789 |
1010 753 |
975 904 |
Липень |
731 450 |
887 671 |
1010 756 |
1200 335 |
917 926 |
Серпень |
560 714 |
964 721 |
857 433 |
988 787 |
943 631 |
Вересень |
463 384 |
558 959 |
701 247 |
687 392 |
562 437 |
Жовтень |
379 542 |
453 380 |
562 904 |
568 860 |
506 344 |
Листопад |
352 553 |
481 475 |
469 353 |
497 461 |
485 215 |
Грудень |
357 808 |
452 878 |
499 913 |
461 117 |
457 852 |
Усього |
5827 358 |
6861 222 |
7636 922 |
8392 208 |
7955 891 |
Для розв’язування цієї задачі спочатку зобразимо обсяги продажів на графіку. Легко бачити, що продажі мають сезонний характер (див. рис. 1), тому для прогнозування помісячного обсягу продажів доцільно використовувати методи, основані на використанні індексу сезонності [ ].
Рис. 1. Обсяг продажів безалкогольних напоїв протягом 60 місяців
Індекс сезонності можна обчислити за такою формулою:
(2)
де – середнє значення показника за прийнятий проміжок часу; – середнє значення показника за весь період; k – кількість років; n – кількість місяців.
Для того, щоб сформулювати щомісячний план продажів продукції можна використати наступну залежність:
(3)
де – очікуваний щомісячний обсяг продаж продукції; – очікуваний річний обсяг продаж продукції; – індекс сезонності; n – кількість періодів.
Першим етапом розв’язування задачі, є прогнозування реалізації продукції на 2014 рік. Враховуючи наявні дані, прогнозування будемо здійснювати шляхом побудови лінії регресії. Розв’язування даної задачі будемо здійснювати в середовищі MS Excel, що дозволить суттєво скоротити кількість розрахунків. Для побудови оптимістичного та песимістичного прогнозу об’єму продажів на 2014 рік будемо використовувати поліноміальний та лінійний тренд. Такий вибір зумовлено вихідними даними. Результати подано на рис. 2.
Рис. 2. Прогноз обсягу продажів на 2014 рік:
а) з використанням лінійного тренду (оптимістичний прогноз),
б) з використанням поліноміального тренду (песимістичний прогноз)
Оптимістичному прогнозу відповідає лінійна залежність виду:
,
причому коефіцієнт детермінації , отримане прогнозне значення на наступний рік
Песимістичному прогнозу відповідає поліноміальна залежність, такого вигляду:
коефіцієнт детермінації , прогнозне значення на наступний рік .
Таким чином, обсяг продажів на рік прогнозується в інтервалі .
Використовуючи формули (2) та (3) обчислимо індекси сезонності та здійснимо помісячний прогноз продажів на основі оптимістичного та песимістичного прогнозу на рік. Результати розрахунків подано у табл. 2.
Таблиця 2.
Розрахунок індексу сезонності та щомісячного плану продажів для безалкогольних напоїв
місяць |
Індекс сезонності |
Прогноз |
|
песимістичний |
оптимістичний |
||
1 |
0,6824 |
431 667 |
515 853 |
2 |
0,6093 |
385 421 |
460 588 |
3 |
0,7847 |
496 382 |
593 189 |
4 |
1,0019 |
633 759 |
757 358 |
5 |
1,2742 |
805 999 |
963 189 |
6 |
1,4298 |
904 454 |
1080 845 |
7 |
1,5496 |
980 198 |
1171 361 |
8 |
1,4053 |
888 923 |
1062 285 |
9 |
0,9730 |
615 475 |
735 508 |
10 |
0,8072 |
510 624 |
610 208 |
11 |
0,7498 |
474 264 |
566 757 |
12 |
0,7329 |
463 584 |
553 995 |
Таким чином, отримано інтервальні прогнозні значення для кожного місяця.
Графічне подання результатів розрахунків щомісячного обсягу продажів показано на рис. 3.
Рис. 3. Щомісячний прогноз на 2014 рік
Тепер виконаємо реалістичний прогноз, прийнявши коефіцієнт , тобто вважаючи що ОПР в однаковій мірі довіряє оптимістичному та песимістичному прогнозам. Результати показано на рис. 4.
Рис. 4. Реалістичний помісячний прогноз на 2014 рік
Висновки. Запропонований методичний підхід до прогнозування продажів дозволяє враховувати різні можливі шляхи розвитку ситуації, а також ступінь впевненості ОПР у ймовірності їх реалізації. Зауважимо, що запропонований підхід можна легко узагальнити на випадок, коли маємо більш ніж два можливих прогнозних значення (що відповідає можливим шляхам розвитку ситуації), наприклад, побудувавши реалістичний прогноз таким чином:
,
тут – отримані прогнозні значення, – ступінь довіри (ймовірність здійснення) i-го прогнозу, причому .
Проведені розрахунки показали можливість застосування описаного підходу на практиці.
Література.
1. Айвазян С. А. Прикладная статистика. Исследование зависимостей / С. А. Айвазян. — М. : Финансы и статистика, 1985. – 268 с.
2. Волошин, О.Ф. Моделі та методи прийняття рішень: навч. посіб. для студентів вищ. навч. закл. [Текст] /. О.Ф. Волошин, С.О. Мащенко. – 2-ге вид., перероб. та допов. – К. : Видавничо-поліграфічний центр «Київський університет», 2010. – 336 с.
3. Корягіна С. В. Прогнозування обсягів продажу енергетичних напоїв з урахуванням сезонної специфіки їх реалізації / С. В. Корягіна, А. І. Федорчук // Логістика: [збірник наукових праць] / відповідальний редактор Є. В. Крикавський. – Львів: Видавництво Львівської політехніки, 2010. – С. 618-622. – (Вісник / Національний університет "Львівська політехніка" ; № 690).
4. Методи прогнозування продажів [Електронний ресурс] / М. Колісник // Innovations.com: Проект для інноваційних менеджерів. – 2007 – Режим доступу : http://www.innovations.com.ua/uk/articles/4/19/669
5. Методы прогнозирования объема продаж [Електронний ресурс] / Л.И. Бушуева // Институт независимой оценки – Режим доступу: http://www.ippnou.ru/article.php?idarticle=000511
6. Порватова Н. М. Використання технічних методів прогнозування обсягів продажу кабельно-провідникової продукції / Н. М. Порватова // Вісник Бердянського університету менеджменту і бізнесу : [збірник наукових праць] – Бердянськ : Видавництво Бердянського університету менеджменту і бізнесу, 2011. – С. 75-78. – (Вісник / Бердянський університет менеджменту і бізнесу ; № 3(15)).
7.Трухаев, Р. И. Модели принятия решений в условиях неопределен-ности [Текст] / Р. И. Трухаев. – М.: Наука, 1981. – 168 с.
References.
1. . Ayvazyan S. A. (1985), Prikladnaja statistika. Issledovanie zavisimostej [Applied Statistics. Investigation of dependence] Finance and Statistics, Moscow.
2. Voloshyn O.F. and Mashhenko S.O. (2010), Modeli ta metody pryjnjattja rishen' [Models and methods of decision making] 2nd ed, Publishing center "Kyiv University" , Kyiv, Ukraine.
3. Koryahina S. V.and Fedorchuk А. І. (2010), “Sales forecasting of energy drinks of energy drinks seasonally adjusted” , /Logistics: [collection of scientific papers], vol.690, pp. 618-622.
4. Innovations.com project for innovative managers, (2007), “Sales forecasting methods”, available at: http://www.innovations.com.ua/ua/articles/13498/temp,(Accessed January 2014).
5.Institut nezavisimoj ocenki (2004),“Sales forecasting methods” L.I. Bushueva, available at: http://www.ippnou.ru/article.php?idarticle=000511 , (Accessed January 2014).
6. Porvatova N. M. (2011), “Usage of technical methods of sales forecasting of cables and wires” , Journal of Berdyansk University of Management and Business: [Collected Works], vol.3(15), pp. 75-78.
7. Truhaev R. I. (1981), Modeli prinjatija reshenij v uslovijah neopredelennosti [Decision making models under uncertainty] , Nauka, Moscow.
Стаття надійшла до редакції 16.03.2015 р.